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Hidden Anderson localization in disorder-free Ising–Kondo lattice*
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Anderson localization (AL) phenomena usually exist in systems with random potential. However, disorder-free quan-
tum many-body systems with local conservation can also exhibit AL or even many-body localization transition. We show
that the AL phase exists in a modified Kondo lattice without external random potential. The density of state, inverse partic-
ipation ratio and temperature-dependent resistance are computed by classical Monte Carlo simulation, which uncovers an
AL phase from the previously studied Fermi liquid and Mott insulator regimes. The occurrence of AL roots from quenched
disorder formed by conservative localized moments. Interestingly, a many-body wavefunction is found, which captures
elements in all three paramagnetic phases and is used to compute their quantum entanglement. In light of these findings,
we expect that the disorder-free AL phenomena can exist in generic translation-invariant quantum many-body systems.
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1. Introduction

Localization phenomena due to random potential, namely
the Anderson localization (AL), is at the heart position in mod-
ern condensed matter physics.[1–3] When including the effect
of interaction, many-body localization (MBL) emerges and
has spurred intensive studies on disordered quantum many-
body systems.[4–7] Interestingly, if local conservation, e.g., Z2

gauge symmetry, exists in Hamiltonian, AL/MBL can exist
without external quenched disorder, thus certain translation-
invariant quantum systems can exhibit AL or MBL.[8–11] How-
ever, existing examples of disorder-free AL and MBL are still
rare, in spite of general interests on their relation to quantum
thermalization, lattice gauge field, topological order and novel
quantum liquid.[9,11–15]

Recently, we have revisited a modified Kondo lattice
model, namely the Ising–Kondo lattice (IKL),[16] which is
shown to reduce to fermions moving on static potential prob-
lem due to local conservation of localized moments, thus ad-
mits a solution by classical Monte Carlo (MC) simulation.[17]

On square lattice at half-filling, Fermi liquid (FL), Mott insu-
lator (MI) and Néel antiferromagnetic insulator (NAI) are es-
tablished (see Fig. 1). When doping is introduced, spin-stripe
physics emerges with competing magnetic ordered states, sim-
ilar to the t–J model and f -electron materials.[18,19] As em-
phasized by Antipov et al. in the context of the Falicov–
Kimball model,[8,20] since the weight of static potential satis-
fies Boltzmann distribution, and if temperature is high enough,
the probability distribution of all configurations of static po-
tential tends to be equal, thus may realize binary random po-
tential distribution. When such an intrinsic random potential

is active, AL of fermions appears without external quenched
disorder.

In this paper, we explore the possibility of accessing AL
in the IKL model on square lattice. To simplify the discussion
and to meet our previous work, here we focus on the half-
filling case though doping the half-filled system does not in-
volve any technical difficulty (an example on a doped system
is given in Appendix D). By inspecting density of state (DOS),
inverse participation ratio (IPR) and temperature-dependent
resistance, we will show that the AL phase emerges in interme-
diate coupling regime between metallic FL and insulating MI
above antiferromagnetic critical temperature (see Fig. 1). The
occurrence of AL results from quenched disorder, formed by
the conservative localized moments at each site. Interestingly,
we find a many-body wavefunction, which captures elements
in all three paramagnetic phases and is used to compute their
entanglement entropy. In light of these findings, the disorder-
free AL phenomena could exist in more generic translation-
invariant quantum many-body systems.
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Fig. 1. Finite temperature phase diagram of Ising–Kondo lattice (IKL)
model on square lattice (Eq. 1) from classical Monte Carlo (MC) simu-
lation. There exist Fermi liquid (FL), Mott insulator (MI), Néel antifer-
romagnetic insulator (NAI) and an Anderson localization (AL) phase.
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The rest of this paper is organized as follows: In Sec-
tion 2, the IKL model is introduced and explained. In Sec-
tion 3, MC simulation is performed and observables such
as DOS, IPR and temperature-dependent resistance are com-
puted. Analysis on MC data suggests the appearance of AL
in intermediate coupling regime where thermal fluctuation de-
stroys magnetic long-ranged order. A wavefunction is con-
structed and the entanglement entropy is evaluated. Section 4
gives a summary and a brief discussion on AL in generic quan-
tum many-body systems.

2. Model
The IKL model on square lattice at half-filling is defined

as follows:[17]

Ĥ = −t ∑
⟨i, j⟩,σ

ĉ†
iσ ĉ jσ +

J
2 ∑

jσ
Ŝz

j ĉ
†
jσ σ̂ zĉ jσ , (1)

where itinerant electron interacts with localized f -electron
moment via longitudinal Kondo exchange. Here, σ̂ is the spin
operator of conduction electron; ĉ†

jσ is the creation operator
of conduction electron; Ŝz

j denotes the localized moment of f -
electron at site j; t is the hopping integral between nearest-
neighboring sites i, j, and J is the longitudinal Kondo cou-
pling, which is usually chosen to be antiferromagnetic (J > 0).
In literature, this model (with x-axis anisotropy) is originally
proposed to account for the anomalously small staggered mag-
netization and large specific heat jump at hidden order tran-
sition in URu2Si2.[16,21] It can explain the easy-axis mag-
netic order and paramagnetic metal or bad metal behaviors in
the global phase diagram of heavy fermion compounds.[22–24]

We must emphasize that due to the lack of transverse Kondo
coupling, enhancement of effective mass and related Kondo
screening observed in many heavy fermion compounds are not
captured by the IKL model.

In Ref. [17], we have observed that f -electron’s
spin/localized moment at each site is conservative since
[Ŝz

j, Ĥ] = 0. Therefore, taking the eigenstates of spin Ŝz
j as

bases, the Hamiltonian (1) is automatically reduced to a free
fermion moving on effective static potential {q j}

Ĥ(q) =−t ∑
⟨i, j⟩,σ

ĉ†
iσ ĉ jσ +∑

jσ

J
4

q j ĉ
†
jσ σ̂ zĉ jσ . (2)

Here q emphasizes its q dependence and Ŝz
j|q j⟩=

q j
2 |q j⟩,q j =

±1. Now, the many-body eigenstate of the original model (1)
can be constructed via single-particle state of effective Hamil-
tonian (2) under given configuration of effective Ising spin
{q j}. Therefore, Eq. (1) is solvable in the spirit of the well-
known Kitaev’s toric-code and honeycomb model.[25,26] It can
be regarded as the spinful version of the Falicov–Kimball
model.[8,20] At finite-T , this model can be readily simulated by

classical MC simulation[27] (we consider periodic Ns = L×L
lattices with L up to 20, and details of MC can be found in
Appendix A).

A careful reader may note that isotropic Kondo lattice
with ferromagnetic coupling has been studied by classical MC
simulation.[28,29] The algorithm of MC in our model is simi-
lar to those models, while they considered the ferromagnetic
coupling (we consider antiferromagnetic coupling), thus their
resultant phase diagram is rather different from ours. Tech-
nically, in their model, the local spin is approximated with
classical vector, then the MC simulation is carried out by sam-
pling classical configurations of those vectors. In contrast, our
model is the Ising version of Kondo lattice models, and the
local spin is the quantum Ising spin. When we choose their
eigenstates, such a quantum spin is exactly transformed to
classical spin and MC is performed straightforwardly. There-
fore, our model is exactly simulated by MC while the ferro-
magnetic isotropic Kondo lattice is approximately simulated.

3. Results

In terms of MC, we have determined the finite tempera-
ture phase diagram in Fig. 1. In addition to well-established
FL, MI and NAI in previous work, interestingly we find an AL
phase in intermediate coupling regime at high T . There is no
transition but crossover from FL to AL and AL to MI. Since
the former three phases have been clearly studied,[17] in this
work, we focus on the AL phase.

To characterize the AL phase from FL or MI, we study
the DOS, IPR and temperature-dependent resistance of con-
duction electrons.[3,8] The DOS of c-fermion N(ω) is evalu-
ated from

N(ω)≃ 1
NmNs

∑
{q j}

∑
nσ

δ (ω −Enσ (q)). (3)

In FL, its DOS at Fermi energy (N(0), ω = 0 is Fermi en-
ergy) is finite. For usual AL phase, it results from localization-
delocalization transition from metallic FL states caused by
random potential, so its N(0) is finite. As for MI, Mott
gap driven by local magnetic fluctuation leads to vanishing
N(0).[17]

The IPR measures tendency of localization. Here the
energy/frequency-dependent IPR is used,

IPR(ω)≃ 1
NmNs

∑
{q j}

∑
nσ

∑
j

δ (ω −Enσ (q))(φ
j

nσ )
4. (4)

In a localized state, it has to saturate for large system size.
In contrast, in a delocalized state, such as FL, it has size-
dependence as IPR ∝ 1/V , suggesting a well-defined inverse-
volume behavior.[3,8]
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The temperature-dependent resistance is related to static
conductance σdc as ρ = 1/σdc, which reads

σdc =
πt2e2

Nm
∑
{q j}

∫
dω

−∂ fF(ω)

∂ω
Φ

q(ω). (5)

The derivation of σdc and the detailed form of Φq(ω) can be
found in Appendix C. Generally, localized phases show insu-
lating behavior at low temperature while delocalized metallic
phases have contrary tendency.
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Fig. 2. Density of state (DOS) of conduction electron N(ω) in (a) FL
(J/t = 2), (b) AL (J/t = 8) and (c) MI (J/t = 14) phases at T/t = 0.4.

Now, from MC calculation of these quantities, e.g.,
Figs. 2–4, we find an AL phase in intermediate coupling, be-
side well-established FL and MI at high T regime. In Fig. 2,
AL has finite N(0) though its strength is heavily suppressed
and looks like a pseudogap. The reason is that due to the pre-
formed local antiferromagnetic order, the band gap begins to
form at low T . When increasing temperature, excitation of
localized moments appears and it acts like impurity scatter-
ing center in the well-formed antiferromagnetic background.
Then, the conduction electron scatters from such impurity
and contributes impurity bound state, which fills in the band
gap.[30] At high T , the long-ranged antiferromagnetic order
melts but the band gap survives due to remaining local anti-
ferromagnetic order. After considering impurity bound states,
N(0) in AL is finite and a pseudogap-like behavior appears.
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Fig. 3. Inverse participation ratio (IPR) of conduction electron IPR(ω)
in (a) FL (J/t = 2), (b) AL (J/t = 8) and (c) MI (J/t = 14) phases at
T/t = 0.4. (d) Finite-size extrapolation of IPR at Fermi energy ω = 0.

In Fig. 3, we note that IPR of FL satisfies the expected
inverse-volume law while AL and MI have saturated IPR
around ω = 0. Additionally, extrapolation of IPR at ω = 0
into infinite system size indicates that the localization length
in FL is infinite while AL and MI only have finite localization
length.

The T -dependent resistance of conduction electron is
shown in Fig. 4, and the crossover from FL to AL and MI
is clearly demonstrated. In both AL and MI, the insulat-
ing behaviors appear before the formation of insulating NAI
(T > Tc), suggesting that they are insulators driven by correla-
tion and thermal fluctuation.
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Fig. 4. Temperature-dependent resistance of conduction electron ρ ver-
sus T for different Kondo coupling J/t. Red dots indicate magnetic
critical temperature Tc.

3.1. Why AL appears

As found by MC simulation, the AL phase appears in in-
termediate coupling regime above the magnetic long-ranged
ordered state. If T is high enough, the effective Boltzmann
weight ρ(q) for given configuration of static potential/Ising
spin should be equal. Thus, c-fermion feels an effective po-
tential, which works as binary random potential (recall that
q j = ±1 has two values). Averaging over ρ(q) leads to a dis-
order average for c-fermion and the AL phase is realized.

Technically, the above statement means that

⟨Ô⟩T→∞ ≃ 1
Nm

∑
{q j}

(Ôq(q)+ ⟨⟨Ôc(q)⟩⟩), (6)

where each configuration {q j} can be randomly chosen from
all possible 2Ns configurations rather than the ones weighted
by ρ(q) (Nm is the number of configuration; for Ns ∼ 102 −
103, Nm ∼ 103 is used). If J/t ≫ 1, one expects the appearance
of AL phase. Considering that Mott localization due to corre-
lation should dominate at strong coupling, we recover the find-
ing that the AL phase occurs in intermediate coupling regime.

To justify the above argument, we show DOS and IPR in
Fig. 5 using Eq. (6), where both DOS and IPR agree with ones
in AL phase in Figs. 2(b) and 3(b) in intermediate coupling
regime (J/t = 8). Thus, it is suggested again that AL phase in
our model results from effective random potential formed by
localized moment. As a matter of fact, if we consider weak
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and strong coupling case, their DOS and IPR will be similar to
the counterpart in Figs. 2 and 3 as well, thus all three states at
high-T are stable in the T = ∞ limit.
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Fig. 5. The DOS and IPR for J/t = 8 at effective temperature T = ∞.

3.2. A many-body wavefunction for all three paramagnetic
states

Motivated by arguments in the last subsection and Eq. (6),
we write down the following many-body state, which approx-
imates FL, AL and MI,

|Ψ⟩= 1√
Nm

∑
{q j}

|q1,q2, . . . ,qNs⟩⊗ |ψ⟩ (7)

with |ψ⟩ being the many-body eigenstate of effective free
fermion Hamiltonian (2) for given configuration {q j}, J and
the construction of configuration {q j} are identical to Eq. (6).
It is readily shown that ⟨Ψ |Ô|Ψ⟩ gives the same result as
Eq. (6). Therefore, Eq. (7) itself behaves as a thermal sta-
tistical ensemble at T = ∞.

3.3. Quenched disorder

In the context of AL, both quenched disorder and an-
nealed disorder are static disorder. In literature, the differ-
ence between these two kinds of disorder is that, by definition,
quenched disorder corresponds to a time-independent proba-
bility distribution function (PDF)[8,31–34]

P({q1,q2, . . . ,qNs}) =
Ns

∏
i=1

P(qi), (8)

where each of the P(qi) is the same. In contrast to the PDF
in quenched disorder, the annealed disorder follows a thermal
distribution.

In our model, the quenched disorder means that the con-
figuration of local moments is randomly chosen at every site,
where P(qi) cannot fluctuate in time. We have realized the
quenched disorder at the infinite temperature (T = ∞) situa-
tion. A quenched disordered many-body wavefunction is con-
structed with Nm randomly chosen configurations of local mo-
ments. Here each P(qi) is the same and time-independent, thus
leads to a global constant-type P({q1,q2, . . . ,qNs}) as well.
Under this constant-type PDF, the many-body wavefunction
could be regarded as quenched disordered state.[8]

As mentioned above, with this many-body wavefunction
we can cover the main results of MC simulation at high tem-
perature. It suggests that the quenched disordered state do
capture the main physics of IKL in the high temperature re-
gion. Therefore, it is reasonable to attribute the existence of
disorder-free AL to the intrinsic quenched disorder of local
moments.

3.4. Entanglement entropy

The entanglement entropy SEE is used to characterize the
universal quantum correlation in many-body state. For our
model, we calculate SEE for each slater determinant state |ψ⟩
in the given Ising configuration {q j} as follows.[35]

We consider the open boundary condition and use |ψ⟩ to
compute the equal-time correlation function gq

i j,σ as gq
i j,σ =

⟨ψ|ĉ†
iσ ĉ jσ |ψ⟩. Dividing our system into A and B parts, a re-

duced correlation function g̃q
i j,σ is constructed as

g̃q
i j,σ = gq

i j,σ for i, j ∈ A

and others are zero. Treat g̃q
σ as NA ×NA matrix with non-zero

eigenvalues {ξα} and NA is the number of sites in region A.
The entanglement entropy between subsystems A and B is

SEE =−∑
α

[ξα lnξα +(1−ξα) ln(1−ξα)] . (9)

Using Eq. (9), we have computed SEE for many-body state
Eq. (7), and the results are shown in Fig. 6.
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Fig. 6. The entanglement entropy SEE of many-body wavefunction (7)
for different boundary size Lc between two subsystems and different
Kondo coupling J.

Firstly, SEE decreases monotonically from small-J to
large-J regime, agreeing with the increased localization ten-
dency. Another interesting feature is that when J/t ≃ 12,
SEE/Lc collapses into a single line, thus indicating a crossover
from AL to MI at T = ∞. More close inspection on SEE shows
a linear-dependence on Lc in the MI regime, which is the well-
known area-law for SEE.[36] For the FL regime, its SEE deviates
from the area law with a logarithmic correction.[37,38] A fitting
in FL gives SEE ≃ 0.275Lc lnLc+5.05 for J/t = 2. As for AL,
it qualitatively obeys the area law though a small deviation ex-
ists due to inevitable mixing with delocalized states.
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4. Discussion and conclusion
In conclusion, we have established an AL phase in a mod-

ified Kondo lattice model without external disorder potential.
The presence of AL results from quenched disorder, formed
by conservative localized moment at each site and is a stable
phase even at infinite temperature. A many-body wavefunc-
tion is constructed to understand AL, FL and MI. Their en-
tanglement entropy is computed and the area law is violated
in FL. In light of these findings, we recall that the interact-
ing many-electron system can be rewritten as free electrons
moving on fluctuated background field after the Hubbard–
Stratonovich transformation.[39,40] As noted by Antipov et
al.,[8] if dynamics of the background field is frozen, it can
act as a random potential to scatter electrons. Then, AL or
even MBL phases could be observed in generic many-body
Hamiltonian. It will be interesting to see whether the isotropic
Kondo lattice (transverse Kondo coupling is included), which
is the standard model for heavy fermion study, will support the
presence of those localized states of matter.

Appendix A: MC simulation
With MC simulation, we can write the partition function

as

𝒵 = Tre−β Ĥ = TrcTrS e−β Ĥ = ∑
{q j}

Trc e−β Ĥ(q).

Here, the trace is split into c-fermion and Ŝz, where the latter
is transformed into the summation over all possible configura-
tion {q j}. For each single-particle Hamiltonian Ĥ(q), it can
be easily diagonalized into

Ĥ(q) = ∑
nσ

Enσ d̂†
nσ d̂nσ ,

where Enσ is the single-particle energy level and d̂nσ is the
quasi-particle. The fermion d̂nσ is related into ĉ jσ via

ĉ jσ = |0⟩⟨ jσ |= ∑
n
|0⟩⟨ jσ |nσ⟩⟨nσ |

= ∑
n
|0⟩⟨nσ |⟨ jσ |nσ⟩= ∑

n
d̂nσ φ

j
nσ

with φ
j

nσ ≡ ⟨ jσ |nσ⟩. Now, the trace over c-fermion can be
obtained as

Trc e−β Ĥ(q) = ∑
nσ

⟨nσ |e−β ∑mσ ′ Emσ ′ d̂†
mσ ′ d̂mσ ′ |nσ⟩

= ∏
nσ

(1+ e−βEnσ ).

This is the familiar result for free fermion. However, one
should keep in mind that Enσ actually depends on the effective
Ising spin configuration {q j}, thus we write Enσ (q) to empha-
size this fact. Therefore, the partition function reads

𝒵 = ∑
{q j}

∏
nσ

(1+ e−βEnσ (q)) = ∑
{q j}

e−βF(q),

where we have defined an effective free energy

F(q) =−T ∑
nσ

ln(1+ e−βEnσ (q)). (A1)

In this situation, we can explain e−βF(q) or ρ(q) = 1
𝒵 e−βF(q)

as an effective Boltzmann weight for each configuration of
{q j} and this can be used to perform Monte Carlo simulation
just like the classic Ising model.

To calculate physical quantities, we consider generic op-
erator Ô, which can be split into part with only Ising spin {q j}
and the other part with fermions,

Ô = Ôc + Ôq.

Then, its expectation value in the equilibrium ensemble reads

⟨Ô⟩= ⟨Ôc⟩+ ⟨Ôq⟩= TrÔc e−β Ĥ

Tre−β Ĥ
+

TrÔq e−β Ĥ

Tre−β Ĥ
.

For Ôq, we have

⟨Ôq⟩ =
∑{q j} Ôq(q)eβh∑ j q j Trc e−β Ĥ(q)

∑{q j} e−βF(q)

=
∑{q j} Ôq(q)e−βF(q)

∑{q j} e−βF(q)

= ∑
{q j}

Ôq(q)ρ(q).

In the Metropolis importance sampling algorithm, the above
equation means that we can use the simple average to estimate
the expectation value like

⟨Ôq⟩ ≃ 1
Nm

∑
{q j}

Ôq(q), (A2)

where Nm is the number of sampling and the sum is over each
configuration. Ôq(q) is a number since we always work on the
basis of {q j}.

For Ôc,

⟨Ôc⟩=
∑{q j} eβh∑ j q j TrcÔc(q)e−β Ĥ(q)

∑{q j} e−βF(q)
,

and we can insert e−βF(q)

e−βF(q) in the numerator, which leads to

⟨Ôc⟩ = ∑
{q j}

TrcÔc(q)e−β Ĥ(q)

Trc e−β Ĥ(q)

e−βF(q)

∑{q j} e−βF(q)

= ∑
{q j}

TrcÔc(q)e−β Ĥ(q)

Trc e−β Ĥ(q)
ρ(q)

= ∑
{q j}

⟨⟨Ôc(q)⟩⟩ρ(q).

This means

⟨Ôc⟩ ≃ 1
Nm

∑
{q j}

⟨⟨Ôc(q)⟩⟩, (A3)
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where ⟨⟨Ôc(q)⟩⟩ = TrcÔc(q)e−β Ĥ(q)

Trc e−β Ĥ(q) is calculated based on the

Hamiltonian Ĥ(q). More practically, such a statement means
that if fermions are involved, one can just calculate with Ĥ(q).
Then, average over all sampled configuration gives rise to de-
sirable results.

Appendix B: Correlation function and spectral
function

When we calculate fermion’s correlation function like
⟨ĉ†

i ĉ j ĉ
†
k ĉl⟩,

⟨ĉ†
i ĉ j ĉ

†
k ĉl⟩=

1
Nm

∑
{q j}

⟨⟨ĉ†
i ĉ j ĉ

†
k ĉl⟩⟩.

Then, using the Wick theorem for these free fermions, we ob-
tain

⟨⟨ĉ†
i ĉ j ĉ

†
k ĉl⟩⟩ = ⟨⟨ĉ†

i ĉ j⟩⟩⟨⟨ĉ†
k ĉl⟩⟩+ ⟨⟨ĉ†

i ĉl⟩⟩⟨⟨ĉ j ĉ
†
k⟩⟩.

Next, for each one-body correlation function like ⟨⟨ĉ†
i ĉ j⟩⟩, one

can transform these objects into their quasiparticle basis,

gq
i j ≡ ⟨⟨ĉ†

i ĉ j⟩⟩ = ∑
m,n

⟨⟨d̂†
md̂n⟩⟩(φ i

m)
*
φ

j
n

= ∑
m,n

fF(En(q))δm,n(φ
i
m)

*
φ

j
n

= ∑
n

fF(En(q))(φ i
n)

*
φ

j
n .

Similarly, we have

⟨⟨ĉiĉ
†
j⟩⟩= ∑

n
(1− fF(En(q)))φ i

n(φ
j

n )
* = δi j −gq

ji.

For calculating dynamic quantities like conductance,
(imaginary) time-dependent correlation function such as
⟨⟨ĉ†

i (τ)ĉ j⟩⟩,⟨⟨ĉi(τ)ĉ
†
j⟩⟩ has to be considered. It is easy to show

that

ĉ†
i (τ) = ∑

n
d̂†

n(τ)(φ
i
n)

* = ∑
n

d̂†
n(φ

i
n)

* eτEn(q),

ĉi(τ) = ∑
n

d̂n(τ)φ
i
n = ∑

n
d̂nφ

i
n e−τEn(q).

Therefore,

⟨⟨ĉ†
i (τ)ĉ j⟩⟩= ∑

n
fF(En(q))eτEn(q)(φ i

n)
*
φ

j
n ,

⟨⟨ĉi(τ)ĉ
†
j⟩⟩= ∑

n
(1− fF(En(q)))e−τEn(q)φ i

n(φ
j

n )
*,

⟨⟨ĉ†
i ĉ j(τ)⟩⟩= ∑

n
fF(En(q))e−τEn(q)(φ i

n)
*
φ

j
n ,

⟨⟨ĉiĉ
†
j(τ)⟩⟩= ∑

n
(1− fF(En(q)))eτEn(q)φ i

n(φ
j

n )
*.

Using the time-dependent correlation function, the imaginary-
time Green’s function for fixed Ising spin configuration is

Gq
i j(τ) = −⟨⟨Tτ ĉi(τ)ĉ

†
j⟩⟩

= −θ(τ)⟨⟨ĉi(τ)ĉ
†
j⟩⟩+θ(−τ)⟨⟨ĉ†

j ĉi(τ)⟩⟩.

Thus, if assuming τ > 0, one can find the following rela-
tions between time-dependent correlation functions and their
Green’s function:

Gq
ji(−τ) = ⟨⟨ĉ†

i (τ)ĉ j⟩⟩, Gq
i j(τ) =−⟨⟨ĉi(τ)ĉ

†
j⟩⟩,

Gq
ji(τ) = ⟨⟨ĉ†

i ĉ j(τ)⟩⟩, Gq
i j(−τ) =−⟨⟨ĉiĉ

†
j(τ)⟩⟩.

The Fourier transformation of Gq
i j(τ) reads

Gq
i j(ωn) =

∫
β

0
dτ e iωnτ Gq

i j(τ) = ∑
n

φ i
n(φ

j
n )

*

iωn −En(q)
.

The corresponding retarded Green’s function is obtained via
analytic continuity iωn → ω + i0+,

Gq
i j(ω) = ∑

n

φ i
n(φ

j
n )

*

ω + i0+−En(q)
.

The related spectral function is

Aq
i j(ω) =− 1

π
ImGq

i j(ω) = ∑
n

φ
i
n(φ

j
n )

*
δ (ω −En(q)).

The spectral function with momentum-dependence has essen-
tial importance to spectral experiments, which can be found
as

Aq(k,ω) =
1
Ns

∑
i j

e−ik·(Ri−R j)Aq
i j(ω).

Appendix C: Static conductance and resistance
The dc conductance is related to current–current correla-

tion function as

σdc = lim
ω→0

ImΛxx(k = 0,ω)

ω

and the static resistivity is ρ = 1/σdc. Here, the retarded
current-current correlation function Λxx(k = 0,ω) can be ob-
tained via its imaginary-time form

Λxx(k, iΩn) =
1
Ns

∑
i, j

e ik(Ri−R j)
∫

dτ e iΩnτ⟨Ĵx(i,τ)Ĵx( j,0)⟩.

Here Ĵx is the x-axis component of the current operator. Be-
cause our model is defined on a lattice, in terms of Peierls sub-
stitution, the external electromagnetic potential Ax(i) ≡ Ai,i+x

is introduced as

−t ∑
⟨i j⟩,σ

ĉ†
iσ ĉ jσ →−t ∑

⟨i j⟩,σ
e ieAi j ĉ†

iσ ĉ jσ

with Ai j =−A ji. Now, Ĵx(i) is derived as

Ĵx(i) = lim
A→0

δ Ĥ
δAx(i)

= ite∑
σ

(ĉ†
i+x,σ ĉiσ − ĉ†

iσ ĉi+x,σ ).
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Therefore,

⟨Ĵx(i,τ)Ĵx( j,0)⟩= 1
Nm

∑
{q}

⟨⟨Ĵx(i,τ)Ĵx( j,0)⟩⟩

and
1

(ite)2 ⟨⟨Ĵx(i,τ)Ĵx( j,0)⟩⟩

= ∑
i j,σσ ′

gq
i,i+x,σ (g

q
j, j+x,σ ′ −gq

j+x, j,σ ′)

+gq
i+x,i,σ (g

q
j+x, j,σ ′ −gq

j, j+x,σ ′)

−δσσ ′Gq
j+x,i,σ (−τ)Gq

i+x, j,σ (τ)

+δσσ ′Gq
j,i,σ (−τ)Gq

i+x, j+x,σ (τ)

+δσσ ′Gq
j+x,i+x,σ (−τ)Gq

i, j,σ (τ)

−δσσ ′Gq
j,i+x,σ (−τ)Gq

i, j+x,σ (τ).

Here gq
i jσ has no frequency-dependence and imaginary part,

thus it cannot contribute to conductance and will be neglected
hereafter. Integrating over τ gives∫

dτ e iΩnτ 1
(ite)2 ⟨⟨Ĵx(i,τ)Ĵx( j,0)⟩⟩

= −T ∑
ωn,σ

Gq
j+x,i,σ (ωn)G

q
i+x, j,σ (ωn +Ωn)

+T ∑
ωn,σ

Gq
j,i,σ (ωn)G

q
i+x, j+x,σ (ωn +Ωn)

+T ∑
ωn,σ

Gq
j+x,i+x,σ (ωn)G

q
i, j,σ (ωn +Ωn)

−T ∑
ωn,σ

Gq
j,i+x,σ (ωn)G

q
i, j+x,σ (ωn +Ωn)

= ∑
σ

∫
dω1

∫
dω2

fF(ω1)− fF(ω2)

iΩn −ω2 +ω1

×[−Aq
j+x,i,σ (ω1)A

q
i+x, j,σ (ω2)

+Aq
j,i,σ (ω1)A

q
i+x, j+x,σ (ω2)

+Aq
j+x,i+x,σ (ω1)A

q
i, j,σ (ω2)

−Aq
j,i+x,σ (ω1)A

q
i, j+x,σ (ω2)],

which leads to the retarded current-current correlation

Λxx(k,ω + i0+) =
(ite)2

NsNm
∑
{q}

∑
i j,σ

∫
dω1

∫
dω2

× fF(ω1)− fF(ω2)

ω + i0+−ω2 +ω1
e ik(Ri−R j)

×[−Aq
j+x,i,σ (ω1)A

q
i+x, j,σ (ω2)

+Aq
j,i,σ (ω1)A

q
i+x, j+x,σ (ω2)

+Aq
j+x,i+x,σ (ω1)A

q
i, j,σ (ω2)

−Aq
j,i+x,σ (ω1)A

q
i, j+x,σ (ω2)].

Now, it is straightforward to obtain

ImΛxx(0,ω) =
πt2e2

NsNm
∑
{q}

∑
i j,σ

∫
dω1 ( fF(ω1)− fF(ω1 +ω))

×[−Aq
j+x,i,σ (ω1)A

q
i+x, j,σ (ω1 +ω)

+Aq
j,i,σ (ω1)A

q
i+x, j+x,σ (ω1 +ω)

+Aq
j+x,i+x,σ (ω1)A

q
i, j,σ (ω1 +ω)

−Aq
j,i+x,σ (ω1)A

q
i, j+x,σ (ω1 +ω)].

Finally, the dc conductance is found to be

σdc =
πt2e2

Nm
∑
{q}

∫
dω

−∂ fF(ω)

∂ω
Φ

q(ω)

with

Φ
q(ω) =

1
Ns

∑
i j,σ

[−Aq
j+x,i,σ (ω)Aq

i+x, j,σ (ω)

+Aq
j,i,σ (ω)Aq

i+x, j+x,σ (ω)

+Aq
j+x,i+x,σ (ω)Aq

i, j,σ (ω)

−Aq
j,i+x,σ (ω)Aq

i, j+x,σ (ω)].

Appendix D: Example for doped system at
𝑇 =∞

Here, we show the entanglement entropy SEE and IPR at
Fermi energy IPR(0) for the doped system. We choose chemi-
cal potential µ as µ/t =−4,−3,−2,−1,0 and set J/t = 8. Be-
cause the low T phase diagram of the doped system is rather
complicated due to intertwined magnetic orders, instead, we
focus on T = ∞ limit, where only paramagnetic phases sur-
vive.

Using Eq. (9), SEE and IPR(0) are shown in Fig. D1. We
find that SEE for different µ has similar linear dependence on
Lc, and IPR(0) in infinite system limit is finite. Thus, the
AL phase is stable when deviating from half-filling, at least
in T = ∞ limit.

µ/t

S
E
E
/
L
c

-4 -3 -2 -1 0
0

0.5

1.0

1.5

2.0

2.5

3.0
Lc=25

Lc=45

Lc=65

0 0.01 0.02 0.03

/Ns

0

0.05

0.10

0.15

IP
R
(0
)

µ/t=-4
µ/t=-3

µ/t=-2
µ/t=-1
µ/t=0

Fig. D1. SEE and IPR(0) versus chemical potential µ for the doped
system with J/t = 8 at T = ∞.

Appendix E: Finite IPR at finite 𝑇

At zero temperature, due to the absence of eigenstates in
the gap of Mott insulator, the IPR at Fermi surface should be
strictly equal to zero. However, at finite temperature situation,
the physics of excited states also contributes to the IKL sys-
tem, leading to finite DOS (see Fig. E1) and IPR (see Fig. E2)
in the Mott gap. As shown in Fig. E2, with decreasing temper-
ature the IPR(ω = 0) monotonically decreases, which is ap-
proaching to zero around T = 0. Similar results about nonzero
IPR(ω = 0) at finite temperature could also be found in previ-
ous studies.[8]
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Fig. E1. DOS of conduction electron N(ω) in MI (J/t = 15) at different temperatures: (a) T/t = 0.1, (b) T/t = 0.4, (c) T/t = 0.8. With
increasing temperature, the DOS at Fermi surface increases and the gap decreases.
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Fig. E2. The IPR versus temperature at J/t = 15, which is calculated at
thermodynamic limit.
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